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Accounting for farmers’ control 
decisions in a model of pathogen 
spread through animal trade
Lina Cristancho Fajardo1,2*, Pauline Ezanno2 & Elisabeta Vergu1

Accounting for individual decisions in mechanistic epidemiological models remains a challenge, 
especially for unregulated endemic animal diseases for which control is not compulsory. We propose 
a new integrative model by combining two sub-models. The first one for the dynamics of a livestock 
epidemic on a metapopulation network, grounded on demographic and animal trade data. The second 
one for farmers’ behavior regarding the adoption of a control measure against the disease spread in 
their herd. The measure is specified as a protective vaccine with given economic implications, and 
the model is numerically studied through intensive simulations and sensitivity analyses. While each 
tested parameter of the model has an impact on the overall model behavior, the most important 
factor in farmers’ decisions is their frequency, as this factor explained almost 30% of the variation in 
decision-related outputs of the model. Indeed, updating frequently local health information impacts 
positively vaccination, and limits strongly the propagation of the pathogen. Our study is relevant for 
the understanding of the interplay between decision-related human behavior and livestock epidemic 
dynamics. The model can be used for other structures of epidemic models or different interventions, 
by adapting its components.

Fighting livestock diseases spreading through animal trade is a major issue to guarantee sustainable farm-
ing, competitive agrifood chains and public health1. Epidemic prevention and reduction of prevalence require 
improved methods of control and compliance of the actors, especially for non-regulated diseases for which 
control decisions are left to individual or collective initiatives2. Mechanistic epidemiological models can provide 
a refined mathematical description and understanding of the complex system involved in pathogen spread, and 
be used to assess the effectiveness of control measures. They are complementary to observational or experimental 
approaches3. However, accounting for human behavior in such models in order to increase their predictive power 
remains a challenge4,5, in particular for livestock diseases spreading through a trade network.

Indeed, most works on infectious diseases that consider the adoption of control measures usually do not 
account for human decision-making6 or they do not consider a structured population7,8. In particular, in mod-
els based on a metapopulation over an explicit network9 such as10, control decisions are usually assumed to be 
taken at a centralized level11,12. Furthermore, when human decision-making is explicitly taken into account, it 
generally focuses on the context of human diseases13–15, but it has barely been applied to veterinary epidemiol-
ogy yet16. However, in the context of animal diseases, the decision of implementing control measures can be 
much more influenced by economic considerations than for human diseases, an aspect that should be taken into 
account in the decision model. Finally, in the field of veterinary epidemiology, studies have been mostly focused 
on regulated diseases, so human behavior mainly consists in delaying the application of a central policy17. In 
the few works that investigate control measures for unregulated animal diseases, there is generally no dynamic 
feedback on decision due to epidemic evolution18. Additionally, some real-life aspects, such as farmers having 
limited rationality, free-riding or learning are generally missing19,20. There is therefore a special need for models 
combining the dynamics of an epidemic process that takes place on a livestock trade network, and the behavior 
of farmers regarding the voluntary implementation of control measures21,22.

We build an integrative model that can meet this need by coupling the dynamic spread of a livestock dis-
ease over a structured metapopulation, and the dynamics of the human decision-making process for applying 
a sanitary measure against the epidemic spread. To model the epidemic spread through a trade network we 
use a stochastic compartmental model that takes into account demographic dynamics and animal exchanges. 
The population structure of the model is calibrated using real data. Our decision model is inspired by previous 
studies13–15, in which the result of a decision regarding the voluntary adoption of a control measure for a human 
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disease is evaluated after being applied, and preferences over the possible decisions are updated through time. 
We specifically formalize the dynamic decision problem that each farmer faces, and propose a mechanism that 
represents farmers’ decision-making process in such a context. Our formalization considers some real-life phe-
nomena that can be present in the context of human decision-making: stochastic behavior, learning, and the 
emergence of imitation and free-riding23.

This paper is structured as follows. First, “Methods” section presents the two components of the integrative 
model: the epidemic–demographic model, and the decision model. Then, we describe the specific control meas-
ure we consider, as well as its economic implications. We emphasize that the main contribution of our work is 
methodological, so this integrative model is a result in itself. At the end of this section, we describe the setting 
for simulations and sensitivity analyses we perform on the model, whose findings can be found in “Results” 
section. Finally, the model as well as the results of numerical explorations are examined in “Discussion” section.

Methods
In the following, we describe the two main components of our integrative model: the epidemic–demographic 
one, and the decision-making one. We then detail the integrative model by considering vaccination as a specific 
control measure. Finally, we describe the methodology used for the simulation and analysis of the model.

Epidemic model with demography in a metapopulation based on a trade network.  For this 
work we place ourselves in the context of a hypothetical livestock infectious disease that is transmitted only 
through a contact network structure consisting in herds that exchange animals. This population structure is 
inspired by real data on animal movements, extracted from the French Cattle Identification Database (FCID). 
We assume this is a closed metapopulation, that is, we neglect exchanges with herds outside of it. This livestock 
trade network can be described as a directed weighted time-varying network, where nodes represent herds 
and links represent animal trade. The direction of each link is determined by the transfer’s direction, and its 
weight corresponds to the amount of animals exchanged. By nature, this network is time-varying since links 
may change over time. In fact, not only trade connections may appear or disappear, but the amount of animals 
exchanged can vary on a daily basis.

Given this trade network, we consider an infectious livestock disease that can potentially be spread on it, 
and that can only be directly transmitted between animals within the same herd. The disease is assumed to be 
spread between herds only by animal transfers, as can be observed for diseases such as paratuberculosis24, bovine 
tuberculosis when there is no contact with wildlife25, and porcine reproductive and respiratory syndrome virus26. 
In addition, the infection risk and status are assumed independent of animal breed, age or sex. In the absence 
of any intervention, the intra-herd disease spread is described by a stochastic SIR model3 with demography, 
accounting for animal transfers over the trade network. In a compartmental SIR model, the population is divided 
into three compartments: Susceptible (S), Infected (I), and Recovered (R), according to their health status. The 
only two possible transitions in a basic SIR model correspond to infection (S → I) and recovery (I → R). The 
implicit modelling assumptions we make are the following: intra-herd homogeneous mixing, meaning that the 
contact rate is the same among all the animals in a given herd; absence of a latent period, i.e. animals become 
infectious as soon as they are infected; acquisition of immunity after recovery; no vertical transmission, i.e. no 
mother-to-child transmission during pregnancy or childbirth; frequency-dependent intra-herd transmission, 
i.e. the transmission rate depends on the proportion of infected animals in the herd, rather that on their number; 
variation in time of herd size due to births, deaths and animal transfers, which we assume are not affected by 
the disease prevalence.

Formally, we consider J herds in the population. Without any intervention, for each herd j = 1, . . . , J the 
intra-herd transmission of the disease can be described by the scheme in Fig. 1. We note Sj(t), Ij(t) and Rj(t) the 
number of susceptible, infected and recovered animals in herd j at time t. We suppose Sj(0) > 0 for all j, Ij(0) > 0 
for at least one herd j, and Rj(0) = 0 for all j. We note as Nj(t) := Sj(t)+ Ij(t)+ Rj(t) the size of herd j at time 
t. The parameters βj , τj and µj are the herd specific daily rates of disease transmission, death and birth in herd j. 
As for γ , it is the recovery rate from the disease. Finally, θji is the daily out rate from herd j to herd i, representing 
the mean daily proportion of animals of herd j going to herd i. We consider a continuous-time Markov chain 
model for the stochastic epidemic–demographic dynamics of each herd which we simulate through an Euler 

Figure 1.   Schematic representation of the intra-herd epidemic-demographic dynamics for a herd j, without any 
control measure. Horizontal arrows represent transitions between health-related compartments, corresponding 
to the course of infection inside the herd (yellow rectangle), while vertical arrows represent population flows 
to and from the herd. The coefficients on the arrows are the transition rates. See main text in “Methods” for 
parameter definitions.
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discrete-time scheme using multinomial distributions for numerical efficiency (as described in27 but with non 
random rates). Transition probabilities between compartments, corresponding to birth, death, infection, recovery 
and transfer events, are defined by pXY = [1− exp(−

∑

X �=Y ηXY )]ηXY/
∑

X �=Y ηXY , where ηXY is the daily rate 
concerning the transition from a compartment X to a compartment Y. See Supplementary Equations S1–S15 
for further details.

Farmer’s decision‑making model.  We suppose that farmers can apply a sanitary measure that has a cer-
tain efficacy on the disease spread for a limited amount of time. Then, we assume they search to take the control 
decision that allows them to obtain an optimal value of an individual criterion, i.e. an expected cost resulting 
from the decision. To consider a simple and clear framework, we restrict ourselves to binary decisions (the meas-
ure is applied or not). Additionally, we make the assumption that decision times are synchronized, discrete, and 
equally spaced in time. This proves to be useful when considering the interaction of farmers’ decisions, and for 
evaluating the effect of the time length between successive decisions on the behavior of the integrative model. 
Formally, we suppose that each farmer j = 1, . . . , J searches to solve:

where t = �d , 2�d , 3�d . . . are the decision times, so �d is the duration (in days) between any two consecutive 
decisions. It also determines the instant at which the first decisions are taken. The term atj ∈ {0, 1} refers to the 
control decision: if atj = 1 , the control-measure is applied in herd j at decision time t, otherwise it is not. Ct

atj
(j) 

is the cost in herd j associated with the decision taken at time t. This constitutes a dynamic decision-making 
problem under uncertainty, this latter affecting the cost distribution associated with each possible decision.

To define the farmer’s decision-making process that attempts to solve this problem, we take an approach 
inspired by13–15, in which farmers evaluate the result of a decision after its application, and update their prefer-
ences over time as a function of this result. In this particular context, this approach seems suitable for several 
reasons. First, as we mentioned earlier, costs over time not only depend on the epidemic and decision dynamics 
in the herd where the decision is made, but also on other herds. To exactly solve this optimization problem would 
imply that farmers integrate the actions and epidemic status of other herds. This is a very complex problem due 
to the dimensionality on the number of herds, and on the possible status of the system. Second, since we pose 
a dynamic decision-making problem, there is an effect of learning through repeated decisions. Indeed, we have 
supposed that the cost associated to a decision is observed before making the next decision. Then, it is natural 
to think that farmers learn from the costs they have obtained with their previous choices, to take their next deci-
sions. Finally, through this approach we can easily consider social dynamics such as imitation effects between 
farmers. In our context, this consists in considering a stochastic decision mechanism where the probability of 
applying the measure is updated through the costs each farmer observes over time, and the costs observed by 
his/her neighbors. 

Algorithm 1 Exponential weighting stochastic mechanism with imitation

Input: 2 options = {0,1}, p�d
1 (j) := pinit1  ∀j , κ ≥ 0 , ρ ≥ 0 , B(j) = {i; θij �= 0 or θji �= 0}; j = 1, . . . , J.

For: t = �d , 2�d , 3�d . . . (at each decision time):

         For: j = 1, . . . , J (each farmer):

            –    atj ← Bernoulli(pt1(j))    (takes a decision using his/her current probability of applying the measure)

            –    Ct
atj
(j)    (observes the cost related to his/her decision)

            –     j∗ ← Unif (B(j))    (selects one of his/her neighbors in the trade network)

            –    (atj∗ ,C
t
at
j∗
(j∗))    (observes the decision taken by j∗ and his/her observed cost)

            –    (updates the probability of applying the measure):

                           
p
t+�d
1 (j) =

pt1(j)e
−κCt

1
(j)−ρCt

1
(j∗ )

pt1(j)e
−κCt

1
(j)−ρCt

1
(j∗ )

+(1−pt1(j))e
−κCt

0
(j)−ρCt

0
(j∗ )           (2)

            where the costs of the non taken options are equal to 0, i.e. for k = 0, 1 :

               *   Ct
k(j) = Ct

atj
(j) if k = atj , 0 otherwise.

               *   Ct
k(j

∗) = Ct
at
j∗
(j∗) if k = atj∗ , 0 otherwise.

The mechanism we propose (Algorithm 1) works by updating the probability of applying the measure, pro-
portionally to an exponential weight that takes into account the last decision taken by the farmer and that taken 
by one of his/her neighbors, through a weighted sum of the associated costs. Then at each decision time, each 
farmer j = 1, . . . , J takes a decision atj using his/her current probability of applying the measure pt1(j) . We assume 
that this probability is initially the same for all farmers, and equal to a value pinit1  , and that each farmer observes 
the cost related to his/her decision, and the decision and associated cost observed by one of his/her neighbors 
in the trade network, who is randomly chosen by the farmer. A neighbor of j in the trade network is a farmer 
with whom j exchanges animals according to the daily trade rates, i.e. a farmer j∗ such that θjj∗ �= 0 , or θj∗j �= 0 . 
In the algorithm, we note as B(j) the set of neighbors of j in the trade network.

The update in the probability is then given by Eq. (2). The parameter κ represents farmer’s “sensitivity” to 
his/her own observed costs. A κ close to zero implies that farmers are not very sensitive to their own observed 
costs, and therefore mostly rely on their initial probability of applying the measure, whereas a large κ represents 

(1)min
atj

E

[

Ct
atj
(j)

]

; t = �d , 2�d , 3�d . . .
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the situation in which farmers are very sensitive to their own observed costs for updating their probability of 
applying the measure. For considering an imitation effect, we introduce the parameter ρ that works analogously 
to κ , but on the cost observed by the chosen neighbor. The parameters κ and ρ act then as weights to the farmer’s 
and the neighbor’s observed cost, respectively. In our model, farmer’s next decision can be updated considering 
any of his/her neighbors, regardless of what the neighbor has decided in the previous step. Finally, for updating 
the probabilities, it is natural that these are set so that the decision with a smaller sum of weighted costs receives 
higher probability. Although there are many ways to turn the sum of weighted costs into probabilities, a simple 
and popular method is to use an exponential weighting scheme. This scheme quickly reduces the probability of 
the decision that has resulted to be very bad (high sum of weighted costs). This form is found in the Pairwise 
Fermi (PW-Fermi) rule, which has been previously used in similar contexts, as its stochastic behavior is similar to 
real-life human decision-making28. In this update, the cost associated to non-taken decisions are zero, i.e. either 
Ct
1(j) or Ct

0(j) is zero, and either Ct
1(j

∗) or Ct
0(j

∗) is zero. The non-zero costs define the final form of the probability 
update. In order to see the effect of the decisions and the associated observed costs in this update, we remark that 
since we consider binary decisions, Eq. (2) can be rewritten as an update on the odds of applying the measure:

where oddst1(j) := pt1(j)/(1− pt1(j)); ∀t = �d , 2�d , . . . From this we can see that the odds are reinforced or 
decreased as a result of the farmer’s and the neighbor’s decision and cost. If they both apply the measure at time 
t, the term in the exponential is negative since costs are positive or zero, so the odds for j applying the measure 
decrease. Analogously, if neither of them applies the measure at time t, the term in the exponential is positive 
and the odds of applying it increase. Finally, if they do not make the same decision at time t it is the comparison 
between κCt

atj
(j) and ρCt

at
j∗
(j∗) that determines the direction of the update.

Additionally, we explore an extension of the model where each farmer considers the decisions and costs 
observed by all of his/her neighbors at each decision time. To update his/her probability of vaccinating, he/she 
takes into account the costs observed by his/her neighbors who did not vaccinate at the previous decision time, 
and the costs observed by those who vaccinated, as described in Supplementary Algorithm S1.

An epidemic control measure.  For the control measure that can be applied to manage the spread of the 
disease, we specifically consider a vaccine that can reduce the rate of disease transmission towards a susceptible 
vaccinated animal. We assume this is the only effect the vaccine has. We make the assumption that the vaccine 
maintains a constant efficacy during a certain time period, whose duration is the same as the decision time-step. 
Then, if the vaccine is applied on a susceptible animal in herd j at time t, the rate of transmission towards that 
susceptible animal during the period ]t; t +�d] will be βv

j = βj(1− ev) , where 0 ≤ ev ≤ 1 is the protection 
efficacy of the vaccine.

An economic–epidemiological cost function.  We assume that the farmers are able to asses the eco-
nomic impact that their decisions have on the disease spread in their herd. Therefore, we define the costs on the 
basis of a simple economic cost function, related to the epidemiological consequences of the decision taken at t 
in herd j. We define it in particular for the considered control measure, a protective vaccine, but it can easily be 
modified for a control measure with a different impact on the epidemic transition rates. The cost function we 
considered is:

where in the numerator the first term refers to the cost farmers pay to apply the vaccine, and the second one to 
the economic impact of the epidemic consequences of the vaccine. Precisely, in the first term atj equals 1 if the 
vaccine is applied on herd j at decision time t, and it equals 0 otherwise. CUv is the unitary cost of the vaccine per 
animal, and CFv defines a fixed cost of applying vaccination per herd. This would typically correspond to the cost 
of a veterinary visit. In the second term, r is the monetary value of a healthy animal, and 0 ≤ φ ≤ 1 is the rate of 
reduction of this value if the animal gets infected. So φr is the cost of an infection, that is, the loss in the monetary 
value of an animal if it gets infected. NSj→Ij (t, t +�d) is the number of new infections in the herd, from the 
moment decision is taken until the next decision time. Therefore, the benefit of having healthy animals is implic-
itly given by the animal not reducing its value due to an infection. We remark that we make the assumption that 
each farmer perfectly observes the number of new infections that occurred during the decision period, or at least 
the global loss in the monetary value of the herd φrNSj→Ij (t, t +�d) related to these new infections. However, 
farmers can not identify which animals are infected, which is why we assume they choose to vaccinate the whole 
herd if vaccination is decided. Finally, in order to account for differences in the costs that may only be related to 
the variation of the herd size over the period, we standardize the cost by the sum of the daily herd size during the 
concerned period, which we note as Nj(t, t +�d) = Nj(t)+ Nj(t + 1)+ Nj(t + 2)+ · · · + Nj(t +�d) . This is 
equivalent to standardizing by �dNj(t, t +�d) , where Nj(t, t +�d) is the mean daily herd size over the period.

The scheme of the integrative model for vaccination can be found in Fig. 2. It shows the feed-back loop 
between the epidemic–demographic dynamics, and the decision dynamics. The epidemic–demographic process 
takes place for a period of length �d , until a new decision is taken. This decision is itself a function of economic 
and epidemic consequences of the previous decision.

(3)odds
t+�d
1 (j) = oddst1(j)× e

(1−2atj )κC
t
atj
(j)+(1−2at

j∗
)ρCt

at
j∗
(j∗)

(4)Ct
atj
(j) :=

[CFv + CUvNj(t)]a
t
j + φrNSj→Ij (t, t +�d)

Nj(t, t +�d)
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The flow between the non vaccinated compartment, SNVj(t) , and the vaccinated one, SVj(t) , is deterministic 
once the decision is taken. Indeed, if atj = 1 , all susceptible animals in herd j will enter the SVj(t) compartment 
for the next decision period. If atj = 0 , they will be in SNVj(t) . If decided, vaccination is then applied only once 
per decision time. Indeed, in livestock diseases, as opposed to what happens for human diseases, it is not custom-
ary that farmers vaccinate newborns or the animals they buy after they have already vaccinated the herd, since 
each vaccination would then imply a cost for a veterinary visit. Furthermore, if the herd is vaccinated, farmers 
generally rely on herd immunity to indirectly protect susceptible animals in the herd.

Simulation setting.  For our simulation study, the population structure is set close to the one observed 
in real data obtained from the FCID. Furthermore, demographic parameters are fixed close to real-life values. 
Details on the values used for these parameters and the procedures to generate population structure are speci-
fied in the Supplementary Methods. In particular, the simulated trade network is scale-free, as the one observed 
in the real-life animal movements, then the in-degree and out-degree distributions follow a power law. That is, 
the majority of herds only buy (sell) animals to a few other herds, and very few herds buy (sell) to many differ-
ent herds, which are known as hubs. We simulate this network through the configuration model, using degree 
sequences generated from a power law. We consider J = 5000 herds, roughly the number of herds in the Fin-
istère region in France, a cattle densely populated region, which we follow during T = 1095 days (i.e. 3 years). 
The values of the epidemic, economic and decision-related parameters used in the simulation study are given 
in Table 1.

We remark that these are set close to realistic values, having in mind a standard SIR endemic disease. In 
particular, we consider the same transmission rate across herds, so βj = β; ∀j = 1, . . . , J . As for the duration of 
the decision it is chosen to be 180 days, which is a reasonable assumption in practice. The values for κ and ρ are 
chosen so as to have two potentially contrasted decision scenarios.

Sensitivity analyses.  Sensitivity analysis is useful to study how much the variation in each parameter of 
the model contributes to the variation of the model outputs29. In our sensitivity analyses we consider 13 input 
parameters in total. Other parameters, in particular the demographic ones, are fixed as specified earlier. We 
consider eight outputs corresponding to the three model components: epidemic, economic and decision-related, 
and one additional output that combines epidemic and decision-related elements. These outputs are defined in 
Table 2.

The values of the inputs used in the sensitivity analyses are chosen using Fractional Factorial design30 with 5 
equally spaced levels, which results in 625 combinations of parameters. To obtain this design we use the R pack-
age PLANOR31. Since the model is stochastic, we run 50 simulations for each combination, and we consider the 
mean and the variance of each output over runs. Table 1 contains the values considered for each input in the full 
sensitivity analysis. Since we use a IV-resolution design, we are able to estimate main effects unconfounded by 
two-factor interactions, while limiting the number of runs required for the analysis. With this design, we can also 
estimate two-factor interaction effects, even if these may be confounded, i.e. can not be estimated independently 

Figure 2.   Representation of the integrative epidemic-decision dynamical model for a herd j, accounting for 
vaccinating decisions with a protective effect ( βv

j < βj ). See main text in “Methods” for parameter definitions.
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to each other32. We study the outputs individually, by groups regarding the nature of the outputs, and by consid-
ering all outputs together. For the multivariate analyses, we use PCA (Principal Component Analysis) to reduce 
the dimension of the output space, before using Analysis of variance (ANOVA) for the computation of Global 
Sensitivity Indices (GSI), which are weighted means of the sensitivity indices over the retained dimensions in 
the PCA, as described in33. More precisely, ANOVA is particularly suited for analyzing the outcome of a factorial 

Table 1.   Parameters of the integrative model: description, standard values and values tested in the full 
sensitivity analysis.

Parameters Definition Standard value Values tested in the sensitivity analysis

Epidemic

β/γ Transmission rate per herd × average duration of infection 2 [1.1, 2.07, 3.05, 4.02, 5]

1/γ Average duration of infection (in days) 90 [10, 32.5, 55, 77.5, 100]

p0Iherds
Initial proportion of infected herds 0.10 [0.01, 0.22, 0.43, 0.64, 0.85]

p0Ianim Initial proportion of infected animals in infected herds 0.15 [0.01, 0.25, 0.50, 0.75, 1]

Economic

r Monetary value of a healthy animal (in euros) 2000 [1000, 1500, 2000, 2500, 3000]

φ Reduction in the monetary value of an animal if it gets infected 0.8 [0.01, 0.25, 0.50, 0.75, 1]

CUv Unitary cost of the vaccine per animal (in euros) 5 [1, 4.5, 8, 11.5, 15]

CFv Fixed cost of applying vaccination per herd (in euros) 50 [1, 25.75, 50.5, 75.25, 100]

Decision-related

ev Protection efficacy of the vaccine on susceptible animals 1 [0.01, 0.25, 0.50, 0.75, 1]

�d

Duration of the decision (time between two consecutive decisions). It also deter-
mines the time of the first decision, and is equal to the duration efficacy of the 
vaccine (in days)

180 [30, 114, 198, 281, 365]

pinitv Farmers’ initial probability of vaccinating 0.01 [0.01, 0.25, 0.5, 0.74, 0.99]

κ Farmers’ sensitivity to their own observed cost 0.5. or 12.5 [0.5, 3.5, 6.5, 9.5, 12.5]

ρ/κ
Farmers’ sensitivity to a neighbor’s cost over farmers’ sensitivity to his/her own 
observed cost 0.5 [0, 0.25, 0.5, 0.75, 1]

Table 2.   Description of the outputs of the sensitivity analyses.

Group Output Definition

Epidemic

pTIherds (final inter-herd prevalence rate) Final proportion of infected herds: 1J
∑J

j=1
1Ij(T)>0

pTIanim (final intra-herd mean prevalence rate)
Mean over final infected herds of the final proportion of infected animals: 
(

∑J
j=1

Ij(T)

Nj(T)

)

/

(

∑J
j=1

1Ij(T)>0

)

p
[0,T]
Iherds

 (inter-herd cumulative incidence rate)
Cumulative proportion of newly infected herds (i.e. herds with new infections): 
1

J

∑J
j=1

1∑T
t=0

NSj→Ij (t)>0

p
[0,T]
Ianim

 (mean cumulative intra-herd incidence rate)
Mean cumulative proportion of new infected animals over susceptible animals, for newly 
infected herds: 

(

∑J
j=1

1

T

∑T
t=0

NSj→Ij (t)

Sj(t)

)

/

(

∑J
j=1

1∑T
t=0

NSj→Ij (t)
>0

)

I
[0,T]
anim (mean cumulative intra-herd incidence)

Mean cumulative number of new infected animals for new infected herds: 
(

∑J
j=1

∑T
t=0

NSj→Ij(t)

)

/

(

∑J
j=1

1∑T
t=0

NSj→Ij (t)
>0

)

Economic C[0,T] (total economic cost of the disease)

Sum of the non standardized cumulative disease-related costs (costs of vaccination and costs of 

new infections): 
∑J

j=1

[

∑⌊T/�d⌋
n=0 C

n�d

a
n�d
j

(j)�dNj(t, t +�d)

]

 . Counts costs even before the first 

decision and after the last one

Decision-related

p[0,T]v  (mean vaccination proportion)
Mean proportion of herds that vaccinate over the different decision times except the first one: (

∑⌊T/�d⌋
n=2

1

J

∑J
j=1

1
a
n�d
j =1

)

/(⌊T/�d⌋ − 1)

Aggregated vaccination patterns
Vector consisting in three proportions: of herds that never vaccinate, of herds that vaccinate at 
least once and at most half of the time, and of herds that vaccinate more than half of the time 
but not always. Without taking the first decision into account

Epidemic-decision 
related

Mean cumulative intra-herd incidence rate by 
aggregated vaccination pattern

Vector of the mean cumulative intra-herd incidence rate (see output p[0,T]Ianim
 ) of herds grouped by 

the aggregated vaccination pattern: herds that never vaccinate, herds that vaccinate at least once 
and at most half of the time, and herds that vaccinate more than half of the time but not always. 
Without taking the first decision into account
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design34. For all the sensitivity analyses we use the R package multisensi35. In the PCAs the means are centered 
and scaled, and the dimension is selected as the smallest value that keeps at least 95% of the total variability. 
Among the many experiments, we retain the results of the three following ones: 

	 (i)	 First experiment: all 13 inputs. The means and variances of all outputs: by group, and all outputs simul-
taneously.

	 (ii)	 Second experiment: all inputs except the four epidemic parameters (fixed to their standard values in 
Table 1). Means and variances of all outputs.

	 (iii)	 Third experiment: all inputs except the two epidemic parameters ( p0Iherds and β/γ ) and the two decision-
related parameters ( �d and pinitv  ), fixed to their standard values in Table 1. Means and the variances of 
decision-related outputs.

Results
Model predictions for different decision scenarios.  Results regarding the inter-herd prevalence, and 
the intra-herd prevalence for infected herds are provided for four different scenarios (Fig. 3): no farmer ever 
vaccinates, never scenario; every farmer vaccinates at every decision-time , always scenario; farmers vaccinate 
following the proposed decision-making mechanism (Algorithm 1) using κ = 0.5 , neigh-expw(0.5) scenario; 
and the same mechanism using κ = 12.5 , neigh-expw(12.5) scenario.

As expected, the worst and best case scenarios are the scenario where farmers never vaccinate, and the one 
where they all vaccinate at each decision time. We remark that the vaccination gain particularly affects inter-herd 
prevalence, but is still observable for intra-herd prevalence. In the intermediate scenarios, farmers’ sensitivity 
to observed costs determines the changes in the proportion of herds that vaccinate over time, and therefore 
in the control of the pathogen spread. Indeed, in the scenario with higher farmers’ sensitivity to costs (neigh-
expw(12.5) scenario), the proportion of farmers that vaccinate quickly increases after the first decision, generating 
a mean inter-herd and intra-herd prevalence dynamics rather close to the best case scenario. On the contrary, 
the scenario with smaller farmers’ sensitivity to costs (neigh-expw(0.5) scenario) exhibits a slow increase in the 
proportion of herds that vaccinate, which gives rise to a prevalence behavior close to the one observed for the 
worst case scenario, even if around 2 years it starts to decline. Model predictions over a longer time horizon (9 
years) can be found in Supplementary Fig. S8. The scenarios concerning vaccination exhibit some peaks in the 
intra-herd prevalence roughly at each decision time. For intra-herd prevalence dynamics this behavior is firstly 
explained by the fact that we consider this prevalence only for infected herds at each time, so the concerned 
herds are not the same over the whole trajectory. Furthermore, since we consider a perfect vaccine, when a herd 
is vaccinated all its susceptible animals are completely protected, so that the number of animals that can actu-
ally get infected drops instantaneously to zero, until there are births or imports of non-vaccinated susceptible 
animals (see Supplementary Figs. S5–S7 for an exploration of this behavior). The dynamics of the total number 
of infected animals (Supplementary Fig. S8(c)) is an alternative quantity to study. Yet, as evidenced by the figure, 
it is highly correlated to the proportion of infected herds.

Additionally, Fig. 4 presents the temporal dynamics of the vaccination decisions of the two intermediate 
scenarios (for a single run as an example). In the neigh-expw(0.5) scenario most herds never vaccinate (67%). 

Figure 3.   Temporal dynamics of the epidemic spread for each vaccination scenario over 50 runs. Each decision 
instant is represented by a vertical grey line. (a) Inter-herd prevalence. Mean over runs (solid lines), 10th and 
90th percentiles over runs (dotted lines). Mean proportion of herds that vaccinate at each decision-time in 
each neigh-expw scenario (light blue and orange dots), and its variation over runs (from the 10th to the 90th 
percentile in light blue and orange vertical lines). (b) Intra-herd prevalence for infected herds. Mean over runs 
of the means over infected herds (solid lines), 10th percentile over runs of the 10th percentiles over infected 
herds, and 90th percentile over runs of the 90th percentiles over infected herds (dotted lines).
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They are followed by herds that only vaccinate at the last decision time, which are in turn followed by those that 
only vaccinate at the next to last decision time, etc. Only 28 out of the 64 possible patterns (over 6 decision times) 
are observed in this scenario. On the other hand, in the neigh-expw(12.5) scenario the most frequent behavior 
(39%) is to not vaccinate at the initial decision and to always vaccinate afterwards. However, this vaccination 
pattern is closely followed by the one where herds never vaccinate (33%). We also observe a higher variety of 
behaviors than in the neigh-expw(0.5) scenario, 44 out of the 64 possible patterns, which translates into less 
frequent patterns. Nevertheless, some of them stand out: the one where herds vaccinate from the third decision 
time, the one where herds only vaccinate at the second decision time, and the one where herds vaccinate from 
the fourth decision time.

Results concerning the alternative decision rule, where the information on the costs related to decisions is 
available for all trade neighbors, slightly differ (Supplementary Figs. S9–S10). For both scenarios where κ = 0.5 , 
and κ = 12.5 , there are slightly less and hence more frequent vaccination patterns with respect to the scenarios 
with the same parameter values but considering only one neighbor. For κ = 0.5 , the proportion of herds that vac-
cinate increases and stabilizes more rapidly to a smaller value. The highest proportion of infected herds is slightly 
smaller, but afterwards it decreases less rapidly. For κ = 12.5 , the proportion of herds that vaccinate increases 
more rapidly at the beginning and then it continues to decrease. The prevalence of the disease decreases only 
slightly faster than when using only one neighbor, the epidemic behavior being almost the same.

Figure 4.   Temporal dynamics of the vaccination decisions using the decision mechanism defined in 
Algorithm 1 with κ = 0.5 (a), and κ = 12.5 (b). Results for one run. NV and 0 stand for not vaccinating, 
while V and 1 for vaccinating. Each color represents a different vaccination pattern, defined by the sequence 
of vaccination decisions at each of the six decision times. So the pattern 001111 (or equivalently [NV1, NV2, 
V3, V4, V5, V6]) concerns herds that do not vaccinate at the two first decision times, and always vaccinate 
afterwards. In the left plots, each vertical black line represents a decision time, and the width of the flows 
between decisions is proportional to the frequency of the pattern. In the right plots, the histogram of the 
patterns with a frequency >= 1% is plotted. Hence, in (a), 67% of herds never vaccinate (pattern 000000). In 
(b), 39% of farms always vaccinate except in the first instant (pattern 011111), and 33% never vaccinate (pattern 
000000).
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Key determinant parameters to decision‑making and epidemiological dynamics.  We present 
the results for the sensitivity analyses on the means over runs for the concerned outputs in each experiment in 
Fig. 5. Results regarding the variances over runs can be found in Supplementary Fig. S11. Overall, in Fig. 5(a) we 
see that according to experiment (i), the most influential parameters of the model are the epidemic parameter 
β/γ , which contributes to 25% of the variation of the means, and the decision-related parameter �d , which 
contributes to 14%. So only these two parameters account for more than 38% of the variation. They are followed 
by other epidemic and decision-related parameters, as well as by an economic parameter. Furthermore, for each 
group of outputs, the parameters with the highest main effects on the means are of the same nature as the outputs 
(epidemic parameters have the greatest influence on epidemic outputs, economic parameters on the economic 
output, etc.). For the epidemic outputs, the most influential parameter, β/γ , has a contribution of 61% to the 
variation of the means. As expected, the exploration of simulation results evidences that this contribution trans-
lates into an increase in the propagation of the pathogen.

When focusing on the mean of decision-related outputs, even if interactions have the strongest effect, the 
most influential main effect is �d , i.e. the duration between two consecutive decisions, which contributes 30% 
of the variation. It is followed by the initial probability of vaccinating, which contributes 21% to the variation. 
We remark that �d has an overall negative influence on vaccination of herds, as it determines if control decisions 
are taken at early stages of the epidemic, and is therefore associated with a higher spread of the pathogen. The 
initial probability of vaccinating has, on the contrary, a positive effect on the vaccination and on the limitation 
of the epidemic spread. Concerning the interaction effects, epidemic parameters have the highest influence on 
the means of each group of outputs, and when considering the means of all outputs together. In particular, p0Iherds 
is for each group the most influential parameter through its interaction effects. It mostly interacts with other 
epidemic parameters such as p0Ianim , but it has smaller interactions with other parameters as well.

For experiment (ii), Fig. 5(b) shows that when fixing epidemic parameters, overall the greatest main effects are 
those of the vaccine efficacy ev (29% contribution), the duration of the decision �d (19% contribution), and the 
initial probability of vaccinating pinitv  (14% contribution). They are followed by the main effect of the economic 

Figure 5.   Global Sensitivity Indices (GSI) for the means over runs of the outputs considered in each 
experiment. Sensitivities are split in main effect and two-factor interactions. Blue colors correspond to epidemic 
parameters, green colors to economic parameters, and pink colors to decision-related parameters. (a) GSI 
for the means of all outputs, and by group of outputs in experiment (i). (b) GSI for the means of all outputs 
in experiment (ii). (c) GSI for the means of decision outputs in experiment (iii). See Table 1 for parameters 
definition, and Table 2 for outputs definition.
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parameter: φ (6% contribution). Concerning higher order effects, we mainly observe interactions between the 
first three parameters: ev , �d , and pinitv  . Overall, ev has the greatest interaction influence. Finally, Fig. 5(c) shows 
that in experiment (iii) the parameters φ and κ manage to explain about 50% of the variability of the means 
through their main effects, having a 35% and a 16% contribution, respectively. Each of the other parameters 
explains less than 10% of the variation.

Discussion
In this paper we present a new integrative model for the epidemic spread of a livestock disease on a trade network, 
accounting for farmers’ dynamic decisions concerning the adoption of a control measure in their herd. The model 
consists of an epidemic–demographic and a decision-making components that are interlinked through a feed-
back loop. On the one hand, control decisions have consequences on the epidemic spread, both at the intra-herd 
and the inter-herd levels. On the other hand, the epidemic spread has an impact on the control decisions that 
farmers subsequently take. For the epidemic–demographic component we use a stochastic compartmental model 
with demography on a trade network, that accounts for intra-herd population changes, in particular those that 
concern animal transfers. For the decision-making component we assume the same dynamic decision problem 
for each farmer, and we propose a mechanism that represents their decision-making strategy.

Whereas most epidemiological models found in literature do not consider the voluntary adoption of a control 
measure for the spread of a disease6, or consider an exogenous probability of applying the measure in order to 
only study the observed effects of decisions18, we propose a decision model that considers strategic interactions 
and cognitive considerations in the decision-making process. Our model can therefore be considered as a game-
theoretical or a psychological model, according to the conceptual classification of behavioral epidemiological 
models found in6. The decision-mechanism we propose takes into account different phenomena such as learning, 
stochastic behavior, and imitation dynamics. To our knowledge, these elements are not present in the few existing 
models that have aimed at dynamically integrating the epidemic and decision-making processes of a livestock 
unregulated disease19. We remark that the basic structure of the decision-problem and the decision-mechanism 
can be found in different fields, particularly in the field of online optimization (such as multi-armed bandits36). 
However, we do not seek to find an asymptotically optimal algorithm, which is often the goal in that area, but 
rather to describe farmers’ decision-making process for the application of a control measure such as vaccina-
tion. More precisely, we consider an update of the probability of a farmer applying the measure, that is based on 
self-obtained results and on neighbors’ results.

In our model, farmer’s next decision is based on a neighbor regardless of what the neighbor has decided 
in the previous step. This is not the case in similar models focused on human diseases13–15, in which a person 
only considers other people’s observations if they have taken the opposite decision. In particular, this allows to 
always decrease the odds of a farmer vaccinating if both the farmer and his/her neighbor have previously vac-
cinated. Together with the use of the trade network as the information network in our model, this can amplify 
the emergence of strategic behaviors, as the farmer can search to benefit from the vaccination of one of their 
neighbors, while avoiding the cost of the vaccine. The behavior where individuals (consciously or not) benefit 
from the actions of others without having to bear the cost, is known as free-riding, and has been previously 
addressed within vaccination decision-making models for human diseases6. In particular37, shows it is possible 
that individuals will consciously free-ride when making vaccinating decision.

Overall, our integrative model can be considered as an SIR model with pulsed vaccination38 in a 
metapopulation39, but where the pulse vaccination is asynchronous among sub-populations, and non equally 
spaced in time for each population, since the decision to vaccinate is not made at each decision time by each 
farmer. Our formalization of the integrative model is presented as general as possible so it can potentially be 
adapted to more complex epidemiological models or to other decision-making mechanisms that may be more 
relevant for specific contexts. Similar models have been previously proposed for human diseases13–15, yet none 
truly establishes the model in a generic manner in order to facilitate its adaptation for other diseases, or control 
measures. Even if the economic cost we propose is associated with vaccination and the consequences of an SIR 
model, its basic structure could take into account the epidemiological and economic consequences of other 
measures, for example a treatment that would increase the recovery rate of infected animals. In particular, if the 
epidemic model was aged-structured, the cost on which farmers base their decisions could be refined to take into 
account the age of the animals. The real-life farmers decision-making being undoubtedly complex, the decision 
model we propose is reductive. Yet it provides a complete and adaptive framework with respect to state-of-the-art 
methods in veterinary epidemiology. In the presence of detailed information on farmer’s real-life behavior, our 
model could be run with other parameter values, or it could be modified to stick closer to reality if observations 
on farmers’ decisions denote a different decision-making process.

Among the methodological extensions to consider, we believe that the model could mostly benefit from a 
relaxation of some hypotheses in the decision-making mechanism. First, we consider that farmers perfectly 
observe the costs associated to their control decisions, as well as the decisions and costs of their neighbors, which 
is not completely realistic. Actually, farmers may observe costs with some error, or neighbors may not commu-
nicate their true actions or costs. Second, we assume that the trade network is the information network through 
which farmers share their observations. But farmers may be informed about other herds control practices in a 
more aggregated way, or only from geographical neighbors. Furthermore, from an economic point of view, in 
our decision-model we consider only the financial results of the farmer’s decision, which is in principle a good 
indicator of what interests him/her. We remark however that farmers may have social, personal or environmental 
motivations for taking decisions related to animal welfare40. For example, farmers may have a non-use value for 
their animals, that is, a value related to the animal well-being independently of the use the farmer may make of 
the animal41. Even if some refinement could be made in this direction, this does not seem straightforward from 



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9581  | https://doi.org/10.1038/s41598-021-88471-6

www.nature.com/scientificreports/

a mathematical modelling perspective. However, our decision model can implicitly integrate this information 
through the values of the initial probability of vaccinating and the parameters κ and ρ . In addition, considering 
other types of farmers’ behavior can be of interest in this context. For example, the adaption of the exchange 
network as a function of other farmers’ health state. This intervention is known as network rewiring42, and is 
generally appropriate for regulated diseases for which there is aggregated information on the health status of each 
herd, i.e. neglecting the intra-herd epidemic dynamics. Yet, even with this aggregated information, the adaptation 
of the network can be quite complex. Lastly, an exploration on the emergence of collaborative behaviors43–45, in 
particular through network reciprocity46, can be an interesting perspective for a deeper understanding of the 
observed decision dynamics.

Regarding model’s predictions, simulations evidence the retroactive effect between the dynamics of the epi-
demic spread, and the dynamics of the vaccination decisions. A deeper examination of the model through sen-
sitivity analysis confirms that decision-parameters play a role in the model’s behavior. Apart from the epidemic 
parameters, the time between two consecutive decisions has the highest impact overall, and is the main driver in 
decision-related outputs. Indeed, the shorter the time between decisions, the more frequently farmers evaluate 
their information on epidemic spread, and the fastest they start vaccinating if necessary. A constantly updated 
local information on the disease spread regularly helps updating farmers’ vaccination decisions from the begin-
ning of the epidemic, and is therefore crucial for limiting the disease spread. This is consistent with observations 
from models for human diseases, where health information can produce the eradication of the disease if there is 
a rapid diffusion of this information and if individuals decide to act based on this information47. Furthermore, 
it has been documented that the impact of locally spreading information is amplified if information and disease 
transmission networks overlap48, as it is the case in our model. Finally, an extension of the model where each 
farmer considers all of his/her neighbors decisions in the decision-making process, evidenced small differences 
with respect to the model considering only one neighbor per decision instant. In particular, when farmers have 
a small sensitivity to costs, taking into account all of their neighbors seems to be slightly better in the short term 
for controlling the epidemic diffusion, but not in the long term. When farmers have a very high sensitivity to 
costs, considering all of their neighbors does not significantly change the course of the epidemics with respect 
to the scenario where they consider only one neighbor.

Overall, we conclude that our model effectively integrates the dynamics of the decision process regarding the 
voluntary adoption of a sanitary measure in each herd, and the dynamics of the epidemic spread over a struc-
tured population of herds in a trade network. Hence, we make a significant step towards accounting for human 
decision-making in mechanistic epidemiological models, in particular for endemic animal diseases. Given its 
integrative structure, its flexibility and stability in results, our model can be well adapted for simulation studies 
concerning specific real-life diseases or other control measures.

Code availability
The Python simulation code is available at https://​github.​com/​Crist​ancho​Lina/​Integ​rativ​eEpiD​ecisi​onMod​el. 
The R packages used for the sensitivity analysis are referenced in “Methods”.

Received: 10 December 2020; Accepted: 12 April 2021

References
	 1.	 Tomley, F. M. & Shirley, M. W. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. B Biol. Sci. 364, 2637–2642 (2009).
	 2.	 Carslake, D. et al. Endemic cattle diseases: Comparative epidemiology and governance. Philos. Trans. R. Soc. B Biol. Sci. 366(1573), 

1975–1986 (2011).
	 3.	 Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011).
	 4.	 Hidano, A., Enticott, G., Christley, R. M. & Gates, M. C. Modeling dynamic human behavioral changes in animal disease models: 

Challenges and opportunities for addressing bias. Front. Vet. Sci. 5, 137 (2018).
	 5.	 Manfredi, P. & D’Onofrio, A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer, 

2013).
	 6.	 Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016).
	 7.	 Morin, B. R., Fenichel, E. P. & Castillo-Chavez, C. SIR dynamics with economically driven contact rates. Nat. Resour. Model. 26(4), 

505–525 (2013).
	 8.	 Perrings, C. et al. Merging economics and epidemiology to improve the prediction and management of infectious disease. EcoHealth 

11(4), 464–475 (2014).
	 9.	 Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005).
	10.	 Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and 

simulations. J. Theor. Biol. 251(3), 450–467 (2008).
	11.	 Scaman, K., Kalogeratos, A. & Vayatis, N. Suppressing epidemics in networks using priority planning. IEEE Trans. Netw. Sci. Eng. 

3(4), 271–285 (2016).
	12.	 Braunstein, A., Dall’Asta, L., Semerjian, G. & Zdeborova, L. Network dismantling. Proc. Natl. Acad. Sci. 113(44), 12368–12373 

(2016).
	13.	 Fu, F., Rosenbloom, D. I., Wang, L. & Nowak, M. A. Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. 

B Biol. Sci. 278(1702), 42–49 (2010).
	14.	 Wang, Z., Szolnoki, A. & Perc, M. If players are sparse social dilemmas are too: Importance of percolation for evolution of coopera-

tion. Sci. Rep. 2, 369 (2012).
	15.	 Kuga, K., Tanimoto, J. & Jusup, M. To vaccinate or not to vaccinate: A comprehensive study of vaccination-subsidizing policies 

with multi-agent simulations and mean-field modeling. J. Theor. Biol. 469, 107–126 (2019).
	16.	 Horan, R. D., Fenichel, E. P., Wolf, C. A. & Gramig, B. M. Managing infectious animal disease systems. Annu. Rev. Resour. Econ. 

2(1), 101–124 (2010).
	17.	 Tago, D., Hammitt, J. K., Thomas, A. & Raboisson, D. The impact of farmers’ strategic behavior on the spread of animal infectious 

diseases. PLoS One 11(6), e0157450 (2016).

https://github.com/CristanchoLina/IntegrativeEpiDecisionModel


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9581  | https://doi.org/10.1038/s41598-021-88471-6

www.nature.com/scientificreports/

	18.	 Rat-Aspert, O. & Fourichon, C. Modelling collective effectiveness of voluntary vaccination with and without incentives. Prev. Vet. 
Med. 93(4), 265–275 (2010).

	19.	 Krebs, S., Picault, S. & Ezanno, P. Modelisation multi-agents pour la gestion individuelle et collective d’une maladie infectieuse. 
In HAL (ed. Picard, G.) (Christophe Lang, Nicolas Marilleau, 2018).

	20.	 Shi, B., Liu, G., Qiu, H., Wang, Z., Ren, Y. & Chen, D. Exploring voluntary vaccination with bounded rationality through reinforce-
ment learning. In Physica A: Statistical Mechanics and its Applications515 (2019), pp. 171— 182. ISSN: 0378-4371. https://​doi.​org/​
10.​1016/j.​physa.​2018.​09.​151. https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0378​43711​83126​64.

	21.	 Heesterbeek, H. et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 347, 6227 (2015).
	22.	 Brooks-Pollock, E., De Jong, M., Keeling, M., Klinkenberg, D. & Wood, J. Eight challenges in modelling infectious livestock diseases. 

Epidemics 10, 1–5 (2015).
	23.	 Hershey, J. C., Asch, D. A., Thumasathit, T., Meszaros, J. & Waters, V. V. The roles of altruism, free riding, and bandwagoning in 

vaccination decisions. Organ. Behav. Hum. Decis. Process. 59(2), 177–187 (1994).
	24.	 Beaunee, G., Vergu, E. & Ezanno, P. Modelling of paratuberculosis spread between dairy cattle farms at a regional scale. Vet. Res. 

46.1, 111 (2015).
	25.	 Cousins, D. Mycobacterium BOVIS infection and control in domestic livestock. Rev. Sci. Tech. 20(1), 71–85 (2001).
	26.	 Mortensen, S. et al. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus. Prev. 

Vet. Med. 5312, 83–101 (2002).
	27.	 Breto, C., He, D., Ionides, E. L. & King, A. A. Time series analysis via mechanistic models. Ann. Appl. Stat. 3(1), 319–348 (2009).
	28.	 Nagashima, K. & Tanimoto, J. A stochastic Pairwise Fermi rule modified by utilizing the average in payoff differences of neighbors 

leads to increased network reciprocity in spatial prisoner’s dilemma games. Appl. Math. Comput. 361, 661–669 (2019).
	29.	 Saltelli, A. et al. Global Sensitivity Analysis: The Primer (Wiley, 2008).
	30.	 Gunst, R. F. & Mason, R. L. Fractional factorial design. Wiley Interdiscip. Rev. Comput. Stat. 1(2), 234–244 (2009).
	31.	 Kobilinsky, A., Bouvier, A. & Monod, H. PLANOR: An R package for the automatic generation of regular fractional factorial designs.  

R package version 1.5-3. INRA, MIA, Jouy en Josas, France, 2020.
	32.	 Montgomery, D. C. Design and Analysis of Experiments (Wiley, 2017).
	33.	 Lamboni, M., Monod, H. & Makowski, D. Multivariate sensitivity analysis to measure global contribution of input factors in 

dynamic models. Reliabil. Eng. Syst. Saf. 96(4), 450–459 (2011).
	34.	 Van Schepdael, A., Carlier, A. & Geris, L. Sensitivity analysis by design of experiments. In Uncertainty in Biology 327–366 (Springer, 

2016).
	35.	 Bidot, C., Lamboni, M. & Monod, H. multisensi: Multivariate Sensitivity Analysis.  R package version 2.1-1. 2018. https://​CRAN.R-​

proje​ct.​org/​packa​ge=​multi​sensi.
	36.	 Auer, P., Cesa-Bianchi, N. & Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 

(2002).
	37.	 Ibuka, Y., Li, M., Vietri, J., Chapman, G. B. & Galvani, A. P. Free-riding behavior in vaccination decisions: An experimental study. 

PLoS One 91, e87164 (2014).
	38.	 Choisy, M., Guegan, J.-F. & Rohani, P. Mathematical modeling of infectious diseases dynamics. In: Encyclopedia of Infectious 

Diseases: Modern Methodologies , 379 (2007).
	39.	 Terry, A. J. Pulse vaccination strategies in a metapopulation SIR model. Math. Biosci. Eng. 7(2), 455 (2010).
	40.	 Hansson, H. & Lagerkvist, C. J. Identifying use and non-use values of animal welfare: Evidence from Swedish dairy agriculture. 

Food Policy 50, 35–42 (2015).
	41.	 Lagerkvist, C. J., Hansson, H., Hess, S. & Hoffman, R. Provision of farm animal welfare: Integrating productivity and non-use 

values. Appl. Econ. Perspect. Policy 33(4), 484–509 (2011).
	42.	 Kiss, I. Z. et al. Mathematics of Epidemics on Networks 598 (Springer, 2017).
	43.	 Wang, Z., Moreno, Y., Boccaletti, S. & Perc, M. “Vaccination and epidemics in networked populations—an introduction”. In: Chaos 

Solitons Fractals 103, 177–183 (2017). ISSN: 0960-0779. https://​doi.​org/​10.​1016/j.​chaos.​2017.​06.​004. https://​www.​scien​cedir​ect.​
com/​scien​ce/​artic​le/​pii/​S0960​07791​73025​15.

	44.	 Karlsson, C.-J. & Rowlett, J. Decisions and disease: A mechanism for the evolution of cooperation. Sci. Rep. 10(1), 1–9 (2020).
	45.	 Cardillo, A., Reyes-Suarez, C., Naranjo, F. & Gomez-Gardenes, J. Evolutionary vaccination dilemma in complex networks. Phys. 

Rev. E 88(3), 032803 (2013).
	46.	 Nowak, M. A. Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006).
	47.	 Kiss, I. Z., Cassell, J., Recker, M. & Simon, P. L. The impact of information transmission on epidemic outbreaks. Math. Biosci. 

225(1), 1–10 (2010).
	48.	 Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl. Acad. 

Sci. 106(16), 6872–6877 (2009).

Acknowledgements
This work was carried out with the financial support of the French Research Agency (ANR), project ANR-
16-CE32-0007 (CADENCE). We are grateful to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 
2020. Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing computing resources. 
We thank the French minister of agriculture for providing the access to the FCID.

Author contributions
L.C.F., P.E., and E.V. conceived and designed the study. L.C.F. conducted the analyses, prepared the figures and 
wrote the manuscript. P.E. and E.V. advised model construction and model analyses, advised epidemiological 
details, discussed results and edited manuscript. All authors revised the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​88471-6.

Correspondence and requests for materials should be addressed to L.C.F.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1016/j.physa.2018.09.151
https://doi.org/10.1016/j.physa.2018.09.151
https://www.sciencedirect.com/science/article/pii/S0378437118312664
https://CRAN.R-project.org/package=multisensi
https://CRAN.R-project.org/package=multisensi
https://doi.org/10.1016/j.chaos.2017.06.004
https://www.sciencedirect.com/science/article/pii/S0960077917302515
https://www.sciencedirect.com/science/article/pii/S0960077917302515
https://doi.org/10.1038/s41598-021-88471-6
https://doi.org/10.1038/s41598-021-88471-6
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9581  | https://doi.org/10.1038/s41598-021-88471-6

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021, corrected publication 2021

http://creativecommons.org/licenses/by/4.0/

	Accounting for farmers’ control decisions in a model of pathogen spread through animal trade
	Methods
	Epidemic model with demography in a metapopulation based on a trade network. 
	Farmer’s decision-making model. 
	An epidemic control measure. 
	An economic–epidemiological cost function. 
	Simulation setting. 
	Sensitivity analyses. 

	Results
	Model predictions for different decision scenarios. 
	Key determinant parameters to decision-making and epidemiological dynamics. 

	Discussion
	References
	Acknowledgements


